UNUD Open Repository

UNUD Open Repository provides access and discovery to the University of Udayana publications and digital collections. It contains digitized and digital version of theses, dissertations, research reports, and articles produced by academic communities in this university.

Numerical Calculation for the Residual Tidal Current in Benoa Bay-Bali Island

Prof. Dr. Ir. I Wayan Nuarsa, M.Si., I Wayan Nuarsa (2005) Numerical Calculation for the Residual Tidal Current in Benoa Bay-Bali Island. International Journal of Remote Sensing and Earth Science, 2. ISSN 0216-6739

[img] Archive

Download (4MB)


Princeton Ocean Model (POM) was used to calculate the tidal current and M2-residual current in Benoa Bay using barotropic model (mode 2). The model was forced by tidal elevation, which was given along the open boundary condition using tide data prediction from Hydro-Oceanography Division-Indonesian Navy (DISHIDROS TNI-AL). The computed tidal current and residual current have been compared with both data in Benoa Bay, that are data of the open boundary of Benoa Bay and condition of Benoa Bay after developed a port and reclamation of Serangan Island. The maximum velocity of tidal current for open boundary conditions at flood tide is 0.71 m/sec, whereas at ebb tide is 0.65 m/sec and the maximum velocity after developed a port and reclamation of Serangan Island, at flood tide, is 0.69 m/sec. The simulation of residual current with particular emphasis on predominant constituent of M2 after developed a port and reclamation of Serangan Island shows a strong flow at the western part of Tanjung Benoa and Benoa Harbor and also at bay mouth between Serangan Island and Tanjung Benoa. Maximum velocity of M2-residual current is 0.0585 m/sec by the simulation and showed that the current which was produced forming two eddies in the bay of which one eddy is in the mouth of bay in southern part. The residual current for open boundary condition of bay shows four eddies circulation, one big eddies and the others small. The anticlockwise circulation occurs in the inner part of the bay.

Item Type: Article
Uncontrolled Keywords: Model, Simulation, Tidal current, Residual current
Subjects: L Education > L Education (General)
Divisions: Faculty of Law, Arts and Social Sciences > School of Education
Depositing User: Mr. Repository Admin
Date Deposited: 07 Jun 2016 21:58
Last Modified: 21 Jun 2016 05:58
URI: http://erepo.unud.ac.id/id/eprint/7953

Actions (login required)

View Item View Item