Current Issue

Volume - 11 | Issue - 4
Online since Monday, Apr 30, 2018
Accessed 1796 times.

Download Cover Image

ORIGINAL ARTICLES

Solubility and Dissolution Enhancement of Sulfasalazine by Solid Dispersion Technique (AbstractView.aspx?PID=2018-11-4-1)
Authors: D. M. Shinkar, A. N. Patil, R. B. Saudagar
DOI: 10.5998/0974-360X.2018.0237.8
[Abstract] [PDF Paper] [HTML Paper]

Development of Quality Control Parameter of Hingwashtak Churna (AbstractView.aspx?PID=2018-11-4-10)
Authors: Bhavna Deshmukh, Swati Dubey, Ravindra Kumar Pandeey, Shiv Shankar Shukla
DOI: 10.5998/0974-360X.2018.0246.9
[Abstract] [PDF Paper] [HTML Paper]
Comparative Evaluation of Stability and Anti Bacterial Activity of various concentrations of triple antibiotic paste against Streptococcus salivarius – An in-vitro study (AbstractView.aspx?PID=2018-11-4-11)

Authors: Divya. S., Sujatha. S
DOI: 10.5998/0974-360X.2018.00247.0

Anti Tumor Activity of Ethanolic extract column fraction of Crataeva magna Lou (DC) against Dalton’s ascites lymphoma cell lines in Mice (AbstractView.aspx?PID=2018-11-4-12)

Authors: R. Meera, N. Chidambaramathan
DOI: 10.5998/0974-360X.2018.00248.2

Authors: Gajanan B. Bhagwat, Manoj Jaybhaye
DOI: 10.5998/0974-360X.2018.00249.4

Anti-Bacterial protein extracted from Lactobacillus plantarum (VIT SE07) targeting food borne pathogens (AbstractView.aspx?PID=2018-11-4-14)

Authors: Mohanasrinivasan, V, Poornima S, Nivetha. A
DOI: 10.5998/0974-360X.2018.00250.0

Authors: Deeksha Dewangan, Ajaazuddin, Palak Agrawal, Akansha Bhandarkar, Aditi Bhatt, Swapnil Gupta, Hemlata Sahu, Shradha Devi Died, Rakesh Sahu, Siddharth Kumar Sahu, Pooja Yadav, Kailash Sahu, Hemlata Thapa, Deepika, Tripti Banjare, Kushagra Nagori, Mukesh Sharma, D. K. Tripathi, Amit Alexander

DOI: 10.5998/0974-360X.2018.00251.2

Synthesis of 3-[3-Phenylpyrazylazo]-2, 7-napthalaendiol as new chromogenic reagent for the determination of Nickel (II) in nails of human. (AbstractView.aspx?PID=2018-11-4-16)

Authors: Abdulameed M. Abdulameed, Hussain J. Mohammed

DOI: 10.5998/0974-360X.2018.00252.4

Authors: Dong-Hee Hong, Hyeong-Gyun Kim

DOI: 10.5998/0974-360X.2018.00253.6

Authors: K. N. Raghavendra Swamy, Rama Krishna Alla, Shammas Mohammed, Anusha Konakanchi

DOI: 10.5998/0974-360X.2018.00254.8

Comparison between sit-up and Bridging Exercises on Trunk Muscles Response During Sudden Impact Loading (AbstractView.aspx?PID=2018-11-4-19)

Authors: Yun Gyeong Jeong, Jin Ha Hwang, Jin Seop Kim, Ji Heon Hong, Dong Yeop Lee, JaeHo Yu

DOI: 10.5998/0974-360X.2018.00255.9

Private Access

Authors: Sriroopreddy R, Raghuraman P, Reena Rajkumari B
DOI: 10.5998/0974-360X.2018.00238X

Applications of Graph Theory in Molecular Similarity Measurements (AbstractView.aspx?PID=2018-11-4-20)

Authors: Venkatesh Kamath, Aravinda Pai
DOI: 10.5998/0974-360X.2018.00256.1

Role of Vitamin C in Body Health (AbstractView.aspx?PID=2018-11-4-21)

Authors: Shrada. B. Kumar, Dhanraj M
DOI: 10.5998/0974-360X.2018.00257.3

Antidyslipidemia activity of Ethanol, Methanol and Ethyl acetate extract of Zingiber montanum rhizome (AbstractView.aspx?PID=2018-11-4-22)

Authors: Nidkadek Warditlani, Nimee Pithi Susanti
DOI: 10.5998/0974-360X.2018.00258.5

Identification and Quantification of antivenom compounds from aqueous extract of Cyphostemma peltata root (AbstractView.aspx?PID=2018-11-4-23)

Authors: Thulasik Skaramanian, Sreevani N. S, Meenatchisundaram S
DOI: 10.5998/0974-360X.2018.00259.7
Pharmacognostical, Physicochemical and Preliminary Phytochemical studies of Anthocephalus cadamba (Roxb.) Leaves (AbstractView.aspx?PID=2018-11-4-24)
Authors: Rahul Kaushik, Jainendra Jain, Rallavi Rai, Yogesh Sharma, Virender Kumar, Akanksha Gupta
DOI: 10.5998/0974-360X.2018.00260.3
[Cite] Viewed: 0 (pdf), 41 (html) Private Access

Authors: Myoung-Jin Kwon, Sung-Yun Ahn
DOI: 10.5998/0974-360X.2018.00261.5
[Cite] Viewed: 0 (pdf), 27 (html) Private Access

Authors: S. Poogavanam
DOI: 10.5998/0974-360X.2018.00262.7
[Cite] Viewed: 0 (pdf), 20 (html) Private Access

Authors: Amy Elizabeth Jaibu, R. Sharmuga Sundaram, Krishnaveni. K, Sambathkumar R
DOI: 10.5998/0974-360X.2018.00263.9
[Cite] Viewed: 0 (pdf), 14 (html) Private Access

Computational Modeling of Novel Drug Targets ftsE and mpt83 for MDRTB and Molecular Docking of Selected Compounds from Medicinal Plants. (AbstractView.aspx?PID=2018-11-4-28)
Authors: M. Xavier Suresh, J. A. Mahalakshmi, G. Vinisha
DOI: 10.5998/0974-360X.2018.00264.0
[Cite] Viewed: 0 (pdf), 20 (html) Private Access

Authors: Arpita Ghosh, Shalu Acharma Sam, A. Nagaraja Rao
DOI: 10.5998/0974-360X.2018.00265.2

The Effects of Stepping Exercises on a Box or Stairs on Stroke Patients Lower Limb Muscle Activity and Balance (AbstractView.aspx?PID=2018-11-4-3)

Authors: Hyeon-Su Kim, Keon-Cheol Lee, Won-Sik Bae
DOI: 10.5998/0974-360X.2018.00239.1
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-4-3]

Survey among General Practitioners in Chennai about Dental Restorations being used as a Forensic Tool (AbstractView.aspx?PID=2018-11-4-30)

Authors: S. Haripriya, Ajitha P
DOI: 10.5998/0974-360X.2018.00266.4

Authors: Venkatalakshmi Ranganathan, Ng Jeng Ho, Ravi Sheshala, Sasikala Chinnapan
DOI: 10.5998/0974-360X.2018.00267.6

Insilico Analysis of Inhibitors Related to Aggressive Behavior in Human Beings (AbstractView.aspx?PID=2018-11-4-32)

Authors: Balasankar Karavadi, Martina V.
DOI: 10.5998/0974-360X.2018.00268.8
Determination of Nitrite and Nitrate Ions levels in some types of processed meats marketed locally (AbstractView.aspx?PID=2018-11-4-33)
Authors: Diya Chbani, Ayat Abbood, Marouf Alkhayer
DOI: 10.5998/0974-360X.2018.00269X

Assessing Test Anxiety among the First Year Nursing Students’ of University Sultan Zainal Abidin (AbstractView.aspx?PID=2018-11-4-34)
Authors: Farrahda Hamzah, Khairi Che Mat, Vidya Bhagat, Safiya Amaran, Haszalina Hassan
DOI: 10.5998/0974-360X.2018.00270.6

Authors: Shaik S. Dharan, R. Narayana Charyulu, Sandeep DS
DOI: 10.5998/0974-360X.2018.00271.8

Which is efficient in improving postural control among the novice runners? Isolated ankle strengthening or functional balance training programme: A randomized controlled trial (AbstractView.aspx?PID=2018-11-4-36)
Authors: Selvaraj Sudhakar, Veena Kirthika, S. Padmanabhan, K, C.V. Senthil Nathan, S. Ramachandran, V. Rajalaxmi, S. Sowmiya, P. Senthil Selvam
DOI: 10.5998/0974-360X.2018.00272.X

Authors: Asha, D, Jeganath, S, UVN.V. Arjun, Satheesh Kumar. S
DOI: 10.5998/0974-360X.2018.00273.1
Factors Influencing on Loneliness among College Students in Korea (AbstractView.aspx?PID=2018-11-4-38)

Authors: Kyung-Sook Kim, Hye-geong Cha
DOI: 10.5998/0974-360X.2018.00274.3
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-4-38]
[Cite]

Authors: Bonshikachatterjee, Nivetha. A, Mohanasrinivasan. V
DOI: 10.5998/0974-360X.2018.00275.5
[Cite]

In situ gel of Nifedipine: an approach for extended release with Zero order kinetics (AbstractView.aspx?PID=2018-11-4-4)

Authors: Sreedakshmi.C, Sivakumar.R, Seedevi Giridas, Reshma Fathima, B.Vijaykumar
DOI: 10.5998/0974-360X.2018.00240.8
[Cite]

Authors: Shipra Rohatgi, Shruti Gupta, Madhulika Sharma
DOI: 10.5998/0974-360X.2018.00276.7
[Cite]

Authors: Raghu Khimani, Pankaj Kapupara
DOI: 10.5998/0974-360X.2018.00277.9
[Cite]
Authors: P. Sankaravadivo (A) Rohini, Pradeepa, Pradeep Kumar Rathnavel, Melgana Arumugham Indiran, Srisakthi Durai Kannan
DOI: 10.5958/0974-360X.2018.00278.0

Authors: Jobin Jose, Deepti S, Sandeep D S
DOI: 10.5958/0974-360X.2018.00279.2

Impact of Human Cytomegalovirus Infection associated with the expressed protein of mutated BRCA1 gene in breast tissues from a group of Iraqi Female Patients with Breast Carcinoma (AbstractView.aspx?PID=2018-11-4-44)
Authors: Saad H. Mohammed Ali, Taghreed F Almahbobi, Yasmeen J. Al-Bayaa, Shakir H. Mohammed Al-Alwany
DOI: 10.5958/0974-360X.2018.00280.9

The importance of diagnosing Mycobacterium tuberculosis by real time PCR Compared with the approved diagnostic methods in the Clinical Laboratory (AbstractView.aspx?PID=2018-11-4-45)
Authors: Lama Doia, Danial Dalbou, Mohammad Alkhayer, Haissam Yazigi
DOI: 10.5958/0974-360X.2018.00281.0

Authors: Jayalakshmi N, Ranadheer Chowdary. P, Praveen. D, M. Vijey Aanandhi
DOI: 10.5958/0974-360X.2018.00282.2
Insilico approach of interaction studies in Bacopa monnieri compounds targeting multi-proteins for Alzheimer's Disease (AbstractView.aspx?PID=2018-11-4-47)

Authors: S. Lakshmi Kanthamma, Joyita Krishnamurthi, C. N. Hemalatha, M. Vijey Aannandhi
DOI: 10.5998/0974-360X.2018.00283.4

Viewed: 0 (pdf), 13 (html) Private Access

Authors: Shrada. B. Kumar, Dhanraj. M
DOI: 10.5998/0974-360X.2018.00284.6

Viewed: 0 (pdf), 16 (html) Private Access

Stem Cells: Basics and its Prospective uses in Medical field (AbstractView.aspx?PID=2018-11-4-49)

Authors: Raj Kumar Tiwari, Vikas Sharma, Ravindra Pandey, Shiv Shankar Shukla
DOI: 10.5998/0974-360X.2018.00285.8

Viewed: 0 (pdf), 16 (html) Private Access

Anthelmintic activity of methanolic bark extract of Buchanania axillaris (Desr.) (AbstractView.aspx?PID=2018-11-4-5)

Authors: N. Dora Babu, Saritha Kodithala, R Murali, NSrinivasan
DOI: 10.5998/0974-360X.2018.00241.X

Viewed: 0 (pdf), 27 (html) Private Access

Authors: Shouvonik Sengupta, Moni Philip Jacob Kichakedathil, Deepa Sankar P
DOI: 10.5998/0974-360X.2018.00286.X

Viewed: 0 (pdf), 19 (html) Private Access
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>DOI</th>
<th>Views</th>
<th>Access</th>
</tr>
</thead>
</table>
Synthesis of 3-[3-phenylpyrazylazo]-2,7-naphthalendiol as new chromogenic reagent for the determination of Nickel (II) in Nails of Human. (AbstractView.aspx?PID=2018-11-4-56)
Authors: Abdulhameed M. Abdulhameed, Mustafa Abedalkadeem and Hussain J. Mohammed
DOI: 10.5998/0974-360X.2018.00292.5
[Cite] Viewed: 0 (pdf), 14 (html) Private Access

Pollen Morphology of Some Species of Cypeus L. and Bolboschoeneus is Growing in Diwaniyah River (AbstractView.aspx?PID=2018-11-4-57)
Authors: Azhar Abdulameer Sosam, Taib Falih Al-mayyah
DOI: 10.5998/0974-360X.2018.00293.7
[Cite] Viewed: 0 (pdf), 11 (html) Private Access

Authors: Sereya Konuru, G. Deva Rao, Mandava Venkata Basaveswara Rao
DOI: 10.5998/0974-360X.2018.00294.9
[Cite] Viewed: 0 (pdf), 13 (html) Private Access

DOI: 10.5998/0974-360X.2018.00295.0
[Cite] Viewed: 0 (pdf), 13 (html) Private Access

Wavelet Neural Networks, Elman Backpropagation and Multilayer Perceptrons for Epilepsy Classification from EEG Signals (AbstractView.aspx?PID=2018-11-4-6)
Authors: Hari Kumar Rajaguru, Sunil Kumar Prabhakar
DOI: 10.5998/0974-360X.2018.00242.1
[Cite] Viewed: 0 (pdf), 13 (html) Private Access
UV-VIS and SEM Assessment of Silver Nanoparticles Synthesized using Nd-YAG Laser as antibacterial (AbstractView.aspx?PID=2018-11-4-60)

Authors: Jaafar B. Algburi, Laith Saheb, Anwar Q. A., B. A. Almayahi
DOI: 10.5998/0974-360X.2018.00296.2

Anticonvulsant effect of Bacopa monnieri extracts on Cathecholamine metabolism during PTZ - induced Epilepsy in different brain regions of Albino Rat (AbstractView.aspx?PID=2018-11-4-61)

Authors: E. Komali, Ch. Venkataramaiah, W. Rajendra
DOI: 10.5998/0974-360X.2018.00297.4

Authors: Rajan V. Rele, Prathamesh P. Tiwate
DOI: 10.5998/0974-360X.2018.00298.6

Saad Antakli, Leon Nejem, Duha Shawa Department of Chemistry, Faculty of Science, University of Aleppo, Syria. *Corresponding Author (AbstractView.aspx?PID=2018-11-4-63)

Authors: Saad Antakli, Leon Nejem, Duha Shawa
DOI: 10.5998/0974-360X.2018.00299.8
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>DOI</th>
<th>Viewed:</th>
<th>Access Status</th>
</tr>
</thead>
</table>

Authors: Meena Rajarethnam, Ramaswamy Selvaratnam Ramaswamy
DOI: 10.5998/0974-360X.2018.00305.0

Authors: Akansha Bhandarkar, Amit Alexander, Aditi Bhatt, Pankaj Sahu, Palak Agrawal, Tripti Banjare, Swapnal Gupta, Hemlata Sahu, Shraddha Devi Diwedi, Siddharth Kumar Sahu, Pooja Yadav, Kailash Sahu, Deeksha Dewangan, Hemlata Thapa, Deepika, Vinay Sagar Verma, Mukesh Sharma, D. K. Tripathi, Ajazuddin
DOI: 10.5998/0974-360X.2018.00303.3

Estimation of the Stature from Length of the Mandible in the South Indian Population (AbstractView.aspx?PID=2018-11-4-70)

Authors: T. M. Sreevidhya, Mr. Yuvaraj Babu
DOI: 10.5998/0974-360X.2018.00306.2

Assess Knowledge, Attitude and Practice about Obesity among a Sample of Secondary School Students in Al-karkh District-Baghdad City (AbstractView.aspx?PID=2018-11-4-71)

Authors: Hajir T. AlKhafaji, Sinia K. Abdullah, Rasha Abdal-Jalil
DOI: 10.5998/0974-360X.2018.00307.4

Authors: Sapna Kashyap, Amit Singh, Ajeevt Madhukar Godbole, Sandesh Narayan Somnache
DOI: 10.5998/0974-360X.2018.00308.6
Corporate Social Responsibility (CSR) - A Study with Special Reference to Indian Pharma Industry (AbstractView.aspx?PID=2018-11-4-73)

Authors: C. Vijayabaru, V. Vijayanand, S. Sai Prashanthi, R. Rajesh Kumar, R. Subaash, Madhusodhanan
DOI: 10.5998/978-360X.2018.03098

[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-4-73] [Cite]

Altered Serum Markers of Omentin and Chemerin in Chronic Renal Failure Patients on Hemodialysis (AbstractView.aspx?PID=2018-11-4-74)

Authors: Entezar Rifaat Sarhat, Husamuldeen Salim Mohammed Saeed Siham A. Wadi
DOI: 10.5998/978-360X.2018.03104

[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-4-74] [Cite]

Insilico Analysis of non-Structural Protein (NS4b) from DENV-2 Indian Strain for Antiviral Drug Discovery (AbstractView.aspx?PID=2018-11-4-75)

Authors: Akhilesh Uggale, Nikanth Fadu, Kaleswaran B
DOI: 10.5998/978-360X.2018.03119

[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-4-75] [Cite]

A Survey of Health - Promotive Behaviors among a First Year Students of Nursing’s College (AbstractView.aspx?PID=2018-11-4-76)

Authors: Khudair Fatima W
DOI: 10.5998/978-360X.2018.03128

[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-4-76] [Cite]

Microspheres - Novel Drug Delivery Carrier for Plant Extracts for Antibacterial Activity (AbstractView.aspx?PID=2018-11-4-77)

Authors: Jobin Jose, Dhidhin Raju, Prashanth Nayak
DOI: 10.5998/978-360X.2018.03130

[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-4-77] [Cite]
Nanocrystals: A Newer Technological Advancement in Drug Delivery (AbstractView.aspx?PID=2018-11-4-78)
Authors: Neha Yakvo, Anup Naha, Abhishek Dhoot, Juhi Priya
DOI: 10.5998/0974-360X.2018.0014.1

Authors: G. Lokhasudhan, Ajitha P
DOI: 10.5998/0974-360X.2018.0015.3

Disinfectant Susceptibility Testing of Non-Fermenting Gram Negative Bacilli (AbstractView.aspx?PID=2018-11-4-8)
Authors: G. Bhuvaneshwari, A. S. Shameembaru, M. Kalyani
DOI: 10.5998/0974-360X.2018.0016.5

Review on Costus speciosus a Medicinal Plant (AbstractView.aspx?PID=2018-11-4-80)
Authors: Sandip Agrawal, Nitin Kochar, Anil Chandewar
DOI: 10.5998/0974-360X.2018.0016.5

Holistic Psycho-Spiritual approach to enhance the effectiveness of Methadone Maintenance Therapy (MMT) (AbstractView.aspx? PID=2018-11-4-9)
Authors: S. A. N. Masaud, Nasir Mohamad, Khairi Che Mat, Bhagat V, Nor Hidayah Abu Bakar, Peter S. O. Wong
DOI: 10.5998/0974-360X.2018.0024.7
Antidyslipidemia Activity of Ethanol, Methanol and Ethyl Acetate Extract of Zingiber montanum Rhizome

by Kadek Warditiani
Antidyslipidemia Activity of Ethanol, Methanol and Ethyl Acetate Extract of
Zingiber montanum Rhizome

NI KADEK WARDITIANI, NI MADE PITRI SUSANTI

Abstract

Objective: to compare the anti-dyslipidemia activity of ethanol (EEZR), methanol (MEZR) and ethyl acetate extract of *Zingiber montanum* rhizome (EAEZR).

Method: EEZR, MEZR, and EAEZR were made by maceration method. The solvent extract was evaporated to obtain a viscous extract. Then a phytochemical screening for the compounds contained in each extract was performed. To induce dyslipidemia, Wistar male rats were given standard feed (80%), duck egg yolk (5%) and lard (15%) for 30 days, followed by administration of 1500 mg EEZR, MEZR and EAEZR dose for 30 days. On the 60th day, total cholesterol (TC), triglyceride (TG) and high-density lipoprotein (HDL) blood measurements of the test rat were performed.

Result: phytochemical screening result showed that EEZR, MEZR, and EAEZR contained flavonoid and terpenoid compounds. EEZR, MEZR, and EAEZR could decrease TC, TG and increased HDL in mouse blood significantly compared with dyslipidemia group (p <0.05). The TC and TG percentage decrease and the highest HDL level were owned by ethyl acetate extract of *Zingiber montanum* rhizome.

Discussion: EEZR, MEZR and EAEZR could decrease TC, TG levels and increase HDL in rat blood. The ability to decrease TC and TG levels from *Zingiber montanum* rhizome extract could be caused by the EEZR ability to inhibit pancreatic lipase enzyme activity so that it could suppress the fat absorption from the rats' small intestine. The EAEZR ability was best amongst other because the active compound contained in non-polar *Zingiber montanum* rhizome is 2-methoxy-8-(3,4-dimethoxyphenyl)-1,4-naphthoquinon.

Conclusion: EEZR, MEZR, and EAEZR have the ability to anti-dyslipidemia, where the best activity was owned by EAEZR.

Keywords: EEZR, MEZR, EAEZR, *Zingiber montanum* rhizome, anti-dyslipidemia

INTRODUCTION

Dyslipidemia is a type of degenerative disease characterized by the increase of TC, TG levels and the decrease of HDL levels in the blood. Dyslipidemia that is not handled correctly will lead to other diseases such as diabetes, atherosclerosis, hypertension, and others. Unhealthy lifestyle became one of the trigger factors of the dyslipidemia occurrence. The dyslipidemia incidence keeps increasing in number (Whaley et al., 2005; Sorace et al., 2006).

Zingiber montanum is one of the nutritious rhizomes that are commonly used as carminative, anti-inflammatory, asthma, antioxidants and to overcome muscle pain. The *Zingiber montanum* rhizome ethanol extract is capable of inhibiting pancreatic lipase enzyme
so that it can impede the lipid absorption in the small intestine (Martins et al., 2010). In the *Zingiber montanum* rhizome, there are phenol, monoterpenes, sesquiterpenes, cyclohexane, curcuminooids, cassumunar A, B, C, naphthoquinone derivatives and phenylbutazone derivatives. The active compound contained in the *Zingiber montanum* rhizome is 2-methoxy-8-(3,4-dimethoxyphenyl) -1,4-naphthoquinone (Hartati et al., 2013).

Dyslipidemia can be treated with herbs. One plant that can be used to overcome dyslipidemia is the *Zingiber montanum* rhizome. *Zingiber montanum* rhizome contains efficacious compounds to overcome obesity (Iswantini et al., 2011). The solvent choice for extraction will affect the type of compound that can be extracted; therefore *Zingiber montanum* rhizome extraction is performed by using ethanol, methanol and ethyl acetate solvent. To determine the content of the compounds in each extract, phytochemical screening of each extract was performed, and its ability as an antidyslipidemic is being compared.

Method:

- Material

Zingiber montanum rhizome was collected from Ubud area, Gianyar regency, Bali province, Indonesia. Determination of *Zingiber montanum* rhizome was done at LIPI Kebun Raya Bedugul, Bali (858 / IPH.UPT.04 / AP / XII). Cholesterol assay kits, triglyceride assay kits, and HDL precipitant kits (Biovision Inc., Sanfransisco USA) were purchased from PT. Kurniajaya Sentosa; 96% ethanol, methanol and ethyl acetate solvent were purchased from PT. Bratunco.

- *Zingiber montanum* rhizome powder extraction

Zingiber montanum rhizomes were cleaned, sliced thinly and then was dried. The dried *Zingiber montanum* rhizome was chopped, and then powdered. *Zingiber montanum* rhizome powder was macerated using ethanol, methanol and ethyl acetate solvent. Re-macerations were done twice; solvent was evaporated by using the rotary evaporator to get a thick extract of *Zingiber montanum* rhizome.

- *Zingiber montanum* rhizome extracts phytochemical screening

Each extract was spotted on GF 254 TLC plate and then eluted with toluene: chloroform (1: 9). The TLC results were observed in visible light, UV 254 and UV 366. The plate was then sprayed with Liberman Burchard (LB) and sitroborate reagents. The terpenoid compounds presence would have purple appearance after being sprayed with LB reagents. The flavonoid compounds presence would have light blue appearance under UV 366 after being sprayed with a sitroborate reagent.

- Preparation of test rat

Wistar white rats weighing 120 ± 20 grams were given standard feed and drinking water. Male rats Wistar rats had an ethical clearance certificate (0135/KE-PH/V) that was issued by Udayana University’s Veterinary Faculty.

- Anti-dyslipidemia activity test of *Zingiber montanum* rhizome extract

Wistar male rats were acclimated for seven days, and they were grouped as followed:
a. Normal control group, rats were fed with standard feed and water

b. The negative control group, rats were fed with high-fat diet (80% standard feed, 15% pork oil, 5% duck egg yolk) for 30 days

c. The positive control group, rats were fed with high-fat diet (80% standard feed, 15% pork oil, 5% duck egg yolk) for 30 days then continued with simvastatin 7.2 mg/kg BB for another 30 days

d. EEZR group, rats were fed with high-fat diet (80% standard feed, 15% pork oil, 5% duck egg yolk) for 30 days then continued with EEZR 1500 mg/kg BW for another 30 days

e. MEZR group, rats were fed with high-fat diet (80% standard feed, pork oil 15%, 5% duck egg yolk) for 30 days then continued with MEZR 1500 mg/kg BW for another 30 days

f. EAEZR group, rats were fed with high-fat diet (80% standard feed, 15% pork oil, 5% duck egg yolk) for 30 days then continued with the EAEZR 1500 mg/kg BW for another 30 days

TC, TG and HDL levels measurements in the rats’ blood were performed on the 30th day after high-fat diet and the 60th day after the end of treatment.

- Lipid levels Measurements in rats’ blood

Rats’ blood was taken through the orbital sinus veins, and serum separation from whole blood was performed. TC, TG, and HDL level were then measured by using samples of rats’ blood serum. TC, TG and HDL levels measurement was done by using the spectrophotometric method.

- Analysis results

To know the existence of a significant difference between a normal group, negative control, and treatment with Zingiber montanum rhizome extract, tested with one way ANOVA statistic followed by LSD test. If p < 0.05 then there is a significant difference between groups.

Results

EEZR, MEZR, and EAEZR which contained flavonoid and terpenoid compounds were shown in the identification test by TLC and sprayed recording. EAEZR that was sprayed with LB reagents showed a more definite blue spot than EEZR and MEZR under UV light 254 and 366 observations (Figure 1). EAEZR extract that was sprayed with sinterborate was observed under UV light 254 and 366. It showed more evident purple spot than EEZR and MEZR (Figure 2) (Wagner et al., 1996).
Figure 1. Separation of EEZR, MEZR, and EAEZR before and after sprayed LB reagent.

<table>
<thead>
<tr>
<th>A = visible rays</th>
<th>D = rays visible spray sitroborate</th>
<th>I = EEZR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = UV 254 nm</td>
<td>E = UV 254 nm sitroborate spray</td>
<td>2 = MEZR</td>
</tr>
<tr>
<td>C = UV 366 nm</td>
<td>F = UV 366 nm sitroborate spray</td>
<td>3 = EAEZR</td>
</tr>
</tbody>
</table>

Figure 2. Separation of EEZR, MEZR, and EAEZR before and after sprayed cysroborate reagent.

<table>
<thead>
<tr>
<th>A = visible ray</th>
<th>D = ray visible spray LB</th>
<th>1 = EEZR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = UV 254 nm</td>
<td>E = UV 254 nm spray LB</td>
<td>2 = MEZR</td>
</tr>
<tr>
<td>C = UV 366 nm</td>
<td>F = UV 366 nm spray LB</td>
<td>3 = EAEZR</td>
</tr>
</tbody>
</table>

TC levels in rats’ blood showed that there was an increase after being fed with high-fat diet for 30 days. The statistic test result showed that there was a significant difference of TC level in normal group blood and treatment group (negative control, simvastatin, EEZR, MEZR and EAEZR) where p <0.05. By giving high-fat diet for 30 days, TC levels in rat blood could increase. EEZR, MEZR, EAEZR, and simvastatin were given for another 30
days, and then TC level in rats’ blood was measured. Decreased TC levels occurred in the
treatment group (rats that were given simvastatin, EEZR, MEZR and EAEZR). There was a
significant difference between TC level of rats’ blood in the treatment group and negative
group.

![Graph showing TC level in blood](image)

Figure 3. TC level in rats’ blood, a = significant difference to normal group (p <0.05), b =
significant difference to negative group (p <0.05), pre = TC level in rats’ blood after
high-fat diet administration for 30 days, post = TC level in rats’ blood after 30 days
treatment

TG levels in rats’ blood showed that there was an increase in a high-fat diet for 30 days.
The statistic test result showed that there were significant TG levels differences in normal
group and treatment group (negative control, simvastatin, EEZR, MEZR and EAEZR) where
p<0.05. High-fat diet administration for 30 days could increase TG levels in rats’ blood.
Zingiber montanum rhizome extract was given for another 30 days then TG level in rats’
blood was measured. Decreased TG levels occurred in the treatment group (rats that were
given simvastatin, EEZR, MEZR and EAEZR). There was a significant difference between
TG levels of the treatment group (simvastatin, EEZR, MEZR, and EAEZR) compared to the
negative group. Only TG levels in rats that were given EEZR did not differ significantly with
negative controls.
Figure 4. Triglyceride levels in rats’ blood, a = significant difference to normal group (p <0.05), b = significant difference to negative group (p <0.05), pre = TG level of rats’ blood after high-fat diet administration for 30 days, post = TG level of rats’ blood after 30 days treatment.

HDL levels in rats’ blood showed that there was a decrease after high-fat diet administration for 30 days. The statistic test showed that there were significant differences in HDL levels in normal group and treatment (negative control, simvastatin and Zingiber montanum rhizome extract) where p <0.05. High-fat diet administration for 30 days could reduce HDL level in rats’ blood. Zingiber montanum rhizome extract was done for another 30 days, and then HDL level in rats’ blood was measured. Increased HDL levels occurred in the treatment group (rats that were given simvastatin, EZZR, MEZR, EAEZR). There was a significant difference between HDL level of rats’ blood in treatment group and negative group.

Figure 5. HDL levels in rats’ blood, a = significant difference to normal group (p <0.05), b = significant difference to negative group (p <0.05), pre = HDL level of rats’ blood after high-fat diet administration for 30 days, post = HDL level of rat blood after 30 days treatment.
The lipid levels difference in rats’ blood was calculated by reducing lipid levels after administration of *Zingiber montanum* rhizome extract to lipid levels before administration of *Zingiber montanum* rhizome extract (Table 1). The difference in rats’ blood lipid levels (TG and HDL) that were given EAEZR showed the greatest results. As for the difference of TC level between rats that were given EAEZR and EEZR, they showed almost the same results.

Table 1. Difference of lipid level in rats’ blood given EEZR, MEZR, and EAEZR

<table>
<thead>
<tr>
<th>Groups</th>
<th>Different lipid level in blood before and after treatment (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KT</td>
</tr>
<tr>
<td>EEZR</td>
<td>70.31</td>
</tr>
<tr>
<td>MEZR</td>
<td>45.55</td>
</tr>
<tr>
<td>EAEZR</td>
<td>69.60</td>
</tr>
</tbody>
</table>

Discussion

Solvent polarity sequence from lowest to highest is ethyl acetate, ethanol, methanol. The difference of solvent polarity used for *Zingiber montanum* rhizome extraction causes variations in the extracted compound. The compounds that are obtained with ethanol, methanol and ethyl acetate solvents are usually identical with terpenoids and flavonoids. But in the extraction with ethyl acetate solvents, terpenoid and flavonoid compounds gave noticeable color intensity from the TLC identification result (Fig. 1 and 2). The active compounds contained in the *Zingiber montanum* rhizome are 2-methoxy-8- (3,4-dimethoxyphenyl)-1,4-naphthoquinone (Hartati et al., 2013) while the identity compounds contained in the *Zingiber montanum* rhizome is terpinen-4-ol (Anonymous, 2009). The solvent used to extract the compound is a non-polar solvent. Thus it is more likely that the compound is derived by using ethyl acetate solvent.

The measurement results of TC, TG and HDL levels showed that *Zingiber montanum* rhizome extract could improve lipid profile which can decrease TC and TG levels and could increase HDL level in blood. The difference in rats’ blood lipid levels (TG and HDL) that were given EAEZR showed the highest results. This might be due to the active chemical content that was able to be extracted by the ethyl acetate solvent and made the ability to decrease TG levels and increase HDL levels was highest compared to the ethanol and methanol extract of *Zingiber montanum* rhizome. The ethanol extract of the *Zingiber montanum* rhizome is capable of inhibiting pancreatic lipase enzyme so that it can impede lipid absorption in the small intestine (Martins et al., 2010). The ability to inhibit the action of pancreatic lipase enzyme will impede the absorption of TG in the gut. Inhibition of pancreatic lipase enzyme is one way to overcome obesity (Mancini and Halpern, 2006; Shi and Burn, 2004; Kim et al., 2010). The tannins content in the Araucaria angustifolia extract is responsible for the ability to inhibit pancreatic lipase enzyme (Oliveira et al., 2015). Some plant extracts were rich in polyphenol, saponin and terpene contents are believed to have a role in the fat digestion inhibition (Lunagariya et al., 2014). Gingko biloba extract which contained triterpenoid compound had a hypolipidemic effect by inhibiting pancreatic lipase.
enzyme (Bustanji et al., 2011). Flavonoid compounds that were contained in Armoracia rusticana root and leaf extracts were also able to inhibit pancreatic lipase enzymes (Calabrone et al., 2015). The ability of ethanol, methanol and ethyl acetate extract from Zingiber montanum rhizome in lowering total cholesterol, triglycerides and LDL were possibly caused by the terpenoid and flavonoid compounds.

Conclusion

EEZR, MEZR, and EAEZR had anti-dyslipidemia activity, but EAEZR had the best potency.

References

Anonim, 2009, Farmakope Herbal Indonesia Edisi 1, Direktorat Jendral Bina Kefarmasian dan Alat Kesehatan, Jakarta

Oliveira et al., Inhibition of Pancreatic Lipase and Triacylglycerol Intestinal Absorption by a Pinhão Coat (Aracia angustifolia) Extract Rich in Condensed Tannin, Nutrients, 2015; 7: 5601-14

Calabrone L., Larocca M, Marzocco S, Martelli S, Rossano R, 2015, Total Phenols and Flavonoids Content, Antioxidant Capacity and Lipase Inhibition of Root and Leaf Horseradish (Armoracia rusticana) Extracts, Food and Nutrition Sciences, 6, 64-7
Antidyslipidemia Activity of Ethanol, Methanol and Ethyl Acetate Extract of Zingiber montanum Rhizome
EDITORIAL BOARD:

Editor in Chief
Dr. Mrs. Monika S. Daharwal

Address: RJPT House, Lokmanyu Grih Nirman Society, Rohapuram, In-front of Sector-1, Pt. Deendayal Upadhyay Nagar, Raipur 492 010. (CG) India

Email ID: editor.rjpt@gmail.com

Associate Editors

Dr. A.K. Jha

Address: Principal, Shri Shakaracharya College of Pharma. Sciences, Bhilai CG India

Email ID: jhahak@rediffmail.com

Dr. R.B. Kakade

Address: Professor, Uni. Dept. of Pharmaceutical Sci., RTM Nagpur University, Nagpur India

Email ID: drkakde@yahoo.com

Dr. Nagham Mahmoud Aljamali

Address: college Education, department, IRAQ.

Email ID: dr.nagham.mj@yahoo.com

Dr. Rupesh K. Gautam

Address: ADINA Institute of Pharmaceutical Sciences, Bhopal Road, Sagar (M.P)- 470002

Email ID: drupeshgautam@gmail.com
Dr. Vibha Yadav
Address: Covington, LA, USA
Email ID: editor.rjpt@gmail.com

Dr. U.S. Mahadeva Rao
Address: Kuala Terengganu, Malaysia
Email ID: raousm@gmail.com

Chandrasekaran V M
Address: 124 Technology Tower VIT University
Vellore 632014 (TN)
Email ID: vmcsn@yahoo.com

Dr. Deepansh Sharma
Address: Block 28, Room No. 202 Department of
Biosciences, Lovely Professional University
Email ID: deepanshsharma@gmail.com

Dr. Deependra Singh
Address: University Institute of Pharmacy Pt.
Ravishankar Shukla University Raipur (C.G.)
Email ID: deependraiop@gmail.com

Wissam Zam
Address: Al-Andalus University of Medical Sciences/Faculty of Pharmacy-Tarous, Syria
Email ID: w.zam@au.edu.sy

Dr. S. Ashutosh Kumar
Address: Department of Pharmacy, Tripura University (A Central University) Suryamaninagar,
West Tripura, Tripura- 799022.
Email ID: ashu.mpharm2007@gmail.com

Behzad Foroutan
Address: Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
Email ID: behzad_foroutan@hotmail.com

NAEEM HASAN KHAN
Address: Faculty of Pharmacy, AIMST University,
08100 Bedong, Kedah D.A., Malaysia.
Email ID: naeemshirazi@hotmail.com

Dr. S. Saraf
Address: Professor, University Institute of
Pharmacy, PT. Ravishankar Shukla University,
Raipur-492010 CG India Vice-President,
Pharmacy Council of India, New Delhi
Email ID: shailendrasaraf@rediffmail.com
Prof. D. K. Tripathi
Address: Principal, Rungta Institute of Pharmaceutical Sci. and Research, Bilai CG India
Email ID: editor.rjpt@gmail.com

Dr Girish Pai K
Address: Faculty - Dept of Pharmaceutics Manipal college of pharmaceutical sciences Manipal University, Madhav Nagar Manipal - 576104, Karnataka State, India
Email ID: girish.pai@manipal.edu

ayush dogra
Address: department of electronics and communications, panjab university chandigarh
Email ID: ayush123456789@gmail.com

Dr. Pratibha Vyas
Address: Assistant Professor Microbiology Domain School of Biotechnology and Biosciences Lovely Professional University Punjab
Email ID: pratibha.19064@lpu.co.in

Behzad Foroutan
Address: Department of Pharmacology School of Medicine Shahroud University of Medical Sciences Shahroud, IRAN
Email ID: behzad_foroutan@hotmail.com

P. Parthiban
Address: Centre for R&D, PRIST University, Thanjavur-613403, India
Email ID: parthisivam@yahoo.co.in

Dr. P. Kumaravel
Address: Assistant Professor, Department of Biotechnology, Vysya College, Masainickenpatty, Salem- 636103. Tamil Nadu, India.
Email ID: kumaravelbiotech@gmail.com
<table>
<thead>
<tr>
<th>Name</th>
<th>Address/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Subhashis Debnath</td>
<td>Seven Hills College of Pharmacy, Venkatramapuram, Tirupati, 517561</td>
</tr>
<tr>
<td></td>
<td>Email ID: subhashis.ooty@gmail.com</td>
</tr>
<tr>
<td>Gaurav Kumar</td>
<td>Department of Microbiology School of Bioengineering and Biosciences Lovely</td>
</tr>
<tr>
<td></td>
<td>Professional University, Phagwara, Punjab, India</td>
</tr>
<tr>
<td></td>
<td>Email ID: gau_ravkr@yahoo.com</td>
</tr>
<tr>
<td>ruchi verma</td>
<td>Manipal College of Pharmaceutical Sciences, Manipal University, Karnataka, India</td>
</tr>
<tr>
<td></td>
<td>Email ID: ruchi.verma@manipal.edu</td>
</tr>
<tr>
<td>Dr. Ketan Vinodlal Shah</td>
<td>201, Rudrak Appartment, Guruprasad Society, Nehind Telephone Exchange, Krishna Nagar</td>
</tr>
<tr>
<td></td>
<td>Main Road, Rajkot</td>
</tr>
<tr>
<td></td>
<td>Email ID: ketan421981@gmail.com</td>
</tr>
<tr>
<td>K SUJANA</td>
<td>University College of Pharmaceutical Sciences, Acharya Nagarjuna University</td>
</tr>
<tr>
<td></td>
<td>Email ID: sujana_36@yahoo.co.in</td>
</tr>
<tr>
<td>Dr. P. Brindha Devi</td>
<td>Vels University, Velan Nagar, PV Vaithiyalingam Road, Pallaram</td>
</tr>
<tr>
<td></td>
<td>Email ID: pbrindhadevi@gmail.com</td>
</tr>
<tr>
<td>Dr Vamshi Krishna Tipparjala</td>
<td>Assistant Professor, Senior Scale Department of Pharmaceutics</td>
</tr>
<tr>
<td></td>
<td>Manipal College of Pharmaceutical Sciences, Manipal University, Karnataka, India</td>
</tr>
<tr>
<td></td>
<td>Email ID: krisrcm@gmail.com</td>
</tr>
<tr>
<td>Zain Baity</td>
<td>Syria, Latakia</td>
</tr>
<tr>
<td></td>
<td>Email ID: zein_syrria@hotmail.com</td>
</tr>
<tr>
<td>Laith Ahmed Najam</td>
<td>Mosul University, College of Science, Physics Dept., Mosul</td>
</tr>
<tr>
<td></td>
<td>Email ID: Prof.lai2014@gmail.com</td>
</tr>
<tr>
<td>Veeren Dewoolkar</td>
<td>4824 Washtenaw Ave, Apt C1, Ann Arbor, MI 48108</td>
</tr>
<tr>
<td></td>
<td>Email ID: veerenrx@gmail.com</td>
</tr>
</tbody>
</table>
Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal, devoted to pharmaceutical sciences. The aim of RJPT is to increase the impact of pharmaceutical research both in academia and industry, with strong emphasis on quality and originality. RJPT publishes Original Research Articles, Short Communications, Review Articles in all areas of pharmaceutical sciences from the discovery of a drug up to clinical evaluation. Topics covered are: Pharmaceutics and Pharmacokinetics; Pharmaceutical chemistry including medicinal and analytical chemistry; Pharmacognosy including herbal products standardization and Phytochemistry; Pharmacology; Allied sciences including drug regulatory affairs, Pharmaceutical Marketing; Pharmaceutical Microbiology, Pharmaceutical biochemistry, Pharmaceutical Education and Hospital Pharmacy, Read more (About RJPT.aspx)

Title Search

Paper Title:

(Increasing the number may sl

Current Issue

Volume - 11 | Issue - 4

Online since Monday, Apr 30, 2018 | Accessed 1843

ORIGINAL ARTICLES

Solubility and Dissolution Enhancement of Sulphasalazine
PID=2018-11-4-1)

D. M. Shinkar, A. N. Patil, R. B. Saudagar
DOI: 10.5958/0974-360X.2018.02347.0
[Abstract] [PDF] [HTML] [PDF] [HTML]

Development of Quality Control Parameters of Hingwashi
Bhawna Dethmukh, Swati Dubey, Ravindra Kumar Mandley, Shikha Shaila
DOI: 10.5958/0974-360X.2018.02346.9
[Abstract] [PDF] [HTML] [PDF] [HTML]

Comparative Evaluation of Stability and Anti Bacterial Activity against Streptococcus salivarius – An in-vitro study
Dhepa. S., Sujatha. S
DOI: 10.5958/0974-360X.2018.02357.0
[Abstract] [PDF] [HTML] [PDF] [HTML]

Anti Tumor Activity of Ethanolic extract column fraction of lymphoma cell lines in Mice (Abstract View.a spx?PID=2011)
R. Meera, N. Chidambaranath
DOI: 10.5958/0974-360X.2018.02386.2
[Abstract] [PDF] [HTML] [PDF] [HTML]

Indexed / Abstracted in:
- Scopus
- Pro Quest Central
- CABI Abstract
- CAS: Chemical Abstracts Service (CAS)
- CSA: Chemical Abstracts Service (CAS)
- ICA: Indian Citation Index
- Google Scholar
- Gale Group Inc. USA

Also Subscribe From:
(http://engresearch.net/)
(http://www.asianpharmaonline.org/)
(http://www.indianjournals.com/)
(http://informindia.co.in/)
Antidyslipidemia activity of Ethanol, Methanol and Ethyl acetate extract of Zingiber montanum rhizome

Ni Kadek Warditiani*, Ni Made Pitri Susanti
Pharmacy Departement, Mathematics and Natural Science, Udayana University, Bukit Jimbaran Bali, 80361
*Corresponding Author E-mail: kadektia@unud.ac.id/kadek.warditiani@gmail.com

ABSTRACT:
Excessive food consumption concerning to high calorie, dyslipidemia, obesity and cardiovascular disease. One alternative therapeutic approach in dyslipidemia patients is traditional use of herbal medicines such as Zingiber montanum rhizome. The aim of this study is to compare the anti-dyslipidemia activity of ethanol (EEZR), methanol (MEZR) and ethyl acetate extract of Zingiber montanum rhizome (EAEZR). EEZR, MEZR, and EAEZR were made by maceration method. The solvent extract was evaporated to obtain a viscous extract. Then a phytochemical screening for the compounds contained in each extract was performed. To induce dyslipidemia, Wistar male rats were given standard feed (80%), duck egg yolk (5%) and lard (15%) for 30 days, followed by administration of 1500 mg EEZR, MEZR and EAEZR dose for 30 days. On the 60th day, total cholesterol (TC), triglyceride (TG) and high-density lipoprotein (HDL) blood measurements of the test rat were performed. Phytochemical screening result showed that EEZR, MEZR, and EAEZR contained flavonoid and terpenoid compounds. EEZR, MEZR, and EAEZR could decrease TC, TG and increased HDL in mouse blood significantly compared with dyslipidemia group (p <0.05). The TC and TG percentage decrease and the highest HDL level were owned by ethyl acetate extract of Zingiber montanum rhizome. EEZR, MEZR and EAEZR could decrease TC, TG levels and increase HDL in rat blood. The ability to decrease TC and TG levels from Zingiber montanum rhizome extract could be caused by the EEZR ability to inhibit pancreatic lipase enzyme activity so that it could suppress the fat absorption from the rats’ small intestine. The EAEZR ability was best amongst other because the active compound contained in non-polar Zingiber montanum rhizome is 2-methoxy-8-(3,4-dimethoxyphenyl) -1,4-napthoquinon. EEZR, MEZR, and EAEZR have the ability to anti-dyslipidemia, where the best activity was owned by EAEZR.

KEYWORDS: EEZR, MEZR, EAEZR, Zingiber montanum rhizome, anti-dyslipidemia.

INTRODUCTION:
Dyslipidemia is a type of degenerative disease characterized by the increase of TC, TG levels and the decrease of HDL levels in the blood. Dyslipidemia that is not handled correctly will lead to other diseases such as diabetes, atherosclerosis, hypertension, and others. Unhealthy lifestyle became one of the trigger factors of the dyslipidemia occurrence. The dyslipidemia incidence keeps increasing in number1,2. Zingiber montanum is one of the nutritious rhizomes that are commonly used as carminative, anti-inflammatory, asthma, antioxidants and to overcome muscle pain. The Zingiber montanum rhizome ethanol extract is capable of inhibiting pancreatic lipase enzyme so that it can impede the lipid absorption in the small intestine3. In the Zingiber montanum rhizome, there are phenol, monoterpenes, sesquiterpenes, cyclohexane, curcuminoids, cassumunar A, B, C, naphthoquinone derivatives and phenylbutazone derivatives. The active compound contained in the Zingiber montanum rhizome is 2-methoxy-8-(3,4-dimethoxyphenyl) -1,4-napthoquinone4.
Dyslipidemia can be treated with herbs. One plant that can be used to overcome dyslipidemia is the Zingiber montanum rhizome. Zingiber montanum rhizome contains efficacious compounds to overcome obesity. The solvent choice for extraction will affect the type of compound that can be extracted; therefore Zingiber montanum rhizome extraction is performed by using ethanol, methanol and ethyl acetate solvent. To determine the content of the compounds in each extract, phytochemical screening of each extract was performed, and its ability as an antidyslipidemic is being compared.

MATERIAL AND METHODS:

Material:
Zingiber montanum rhizome was collected during July 2012 from Ubud, Gianyar, Bali, Indonesia. Determination of Zingiber montanum rhizome was done at LIPI Kebun Raya Bedugul, Bali (858/IPH.UPT.04/AP/XII/2012). Cholesterol assay kits, triglyceride assay kits, HDL precipitant kits (Biovision Inc., Sanfransisco USA), boric acid, and citrat acid were purchased from PT. Kurniajaya Sentosa; 96% ethanol, methanol and ethyl acetate solvent were purchased from PT. Bratacho.

Zingiber montanum rhizome powder extraction:
Zingiber montanum rhizomes were cleaned, sliced thinly and then was dried. The dried Zingiber montanum rhizome was chopped, and then powdered. Zingiber montanum rhizome powder was macerated using ethanol, methanol and ethyl acetate solvent. Recmacerations were done twice; solvent was evaporated by using the rotary evaporator to get a thick extract of Zingiber montanum rhizome.

Zingiber montanum rhizome extracts phytochemical screening:
Each extract was spotted on GF254 TLC plate and then eluted with toluene:chloroform (1: 9). The TLC results were observed in visible light, UV 254 and UV 366. The plate was then sprayed with Liebermann-Burchard and nitroborat reagents. The terpenoid compounds presence would have purple appearance after being sprayed with LB reagents. The flavonoid compounds presence would have light blue appearance under UV 366 after being sprayed with a nitroborat reagent.

Preparation of test rat:
Wistar white rats weighing 120 ± 20 grams were given standard feed and drinking water. Male rats Wistar rats had an ethical clearance certificate (0135/KE-PH/V/2013) that was issued by Udayana University’s Veterinary Faculty.

Anti-dyslipidemia activity test of Zingiber montanum rhizome extract:
Wistar male rats were acclimated for seven days, and they were grouped as followed:

a. Normal control group, rats were fed with standard feed and water
b. The negative control group, rats were fed with high-fat diet (80% standard feed, 15% pork oil, 5% duck egg yolk) for 30 days

c. The positive control group, rats were fed with high-fat diet (80% standard feed, 15% pork oil, 5% duck egg yolk) for 30 days then continued with simvastatin 7.2 mg/kg BB for another 30 days

d. EEZR group, rats were fed with high-fat diet (80% standard feed, 15% pork oil, 5% duck egg yolk) for 30 days then continued with EEZR 1500 mg/kg BW for another 30 days

e. MEZR group, rats were fed with high-fat diet (80% standard feed, pork oil 15%, 5% duck egg yolk) for 30 days then continued with MEZR 1500 mg/kg BW for another 30 days

f. EAEZR group, rats were fed with high-fat diet (80% standard feed, 15% pork oil, 5% duck egg yolk) for 30 days then continued with the EAEZR 1500 mg/kg BW for another 30 days

TC, TG and HDL levels measurements in the rats’ blood were performed on the 30th day after high-fat diet and the 60th day after the end of treatment.

Lipid levels Measurements in rats’ blood:
Rats’ blood was taken through the orbital sinus veins, and serum separation from whole blood was performed. TC, TG, and HDL level were then measured by using samples of rats’ blood serum. TC, TG and HDL levels measurement was done by using the spectrophotometric method.

Analysis results:
To know the existence of a significant difference between a normal group, negative control, and treatment with Zingiber montanum rhizome extract, tested with one way ANOVA statistic followed by LSD test. If p <0.05 then there is a significant difference between groups.

RESULTS AND DISCUSSION:
EEZR, MEZR, and EAEZR which contained flavonoid and terpenoid compounds were shown in the identification test by TLC and sprayed recording. EAEZR that was sprayed with LB reagents showed a more definite blue spot than EEZR and MEZR under UV light 254 and 366 observations (Figure 1). EAEZR extract that was sprayed with nitroborat was observed under UV light 254 and 366. It showed more evident purple spot than EEZR and MEZR (Figure 2).
Solvent polarity sequence from lowest to highest is ethyl acetate, ethanol, methanol. The difference of solvent polarity used for *Zingiber montanum* rhizome extraction causes variations in the extracted compound. The compounds that are obtained with ethanol, methanol and ethyl acetate solvents are usually identical with terpenoids and flavonoids. But in the extraction with ethyl acetate solvents, terpenoid and flavonoid compounds gave noticeable color intensity from the TLC identification result (Fig. 1 and 2). The active compounds contained in the *Zingiber montanum* rhizome are 2-methoxy-8-(3,4-dimethoxyphenyl)-1,4-naphthoquinone (Hartati et al., 2013) while the identity compounds contained in the *Zingiber montanum* rhizome is terpinen-4-ol. The solvent used to extract the compound is a non-polar solvent. Thus it is more likely that the compound is derived by using ethyl acetate solvent.

TC levels in rats’ blood showed that there was an increase after being fed with high-fat diet for 30 days. The statistic test result showed that there was a significant difference of TC level in normal group blood and treatment group (negative control, simvastatin, EEZR, MEZR and EAEZR) where p <0.05. By giving high-fat diet for 30 days, TC levels in rat blood could increase. EEZR, MEZR, EAEZR, and simvastatin were given for another 30 days, and then TC level in rats’ blood was measured. Decreased TC levels occurred in the treatment group (rats that were given simvastatin, EEZR, MEZR and EAEZR). There was a significant difference between TC level of rats’ blood in the treatment group and negative group.

TG levels in rats’ blood showed that there was an increase in a high-fat diet for 30 days. The statistic test result showed that there were significant TG levels differences in normal group and treatment group (negative control, simvastatin, EEZR, MEZR and EAEZR) where p<0.05. High-fat diet administration for 30 days could increase TG levels in rats’ blood. *Zingiber montanum* rhizome extract was given for another 30 days then TG level in rats’ blood was measured. Decreased TG levels occurred in the treatment group (rats that were given simvastatin, EEZR, MEZR and EAEZR). There was a significant difference between TG levels of the treatment group (simvastatin, EEZR, MEZR, and EAEZR) compared to the negative group. Only TG levels in rats that were given EEZR did not differ significantly with negative controls.
HDL levels in rats’ blood showed that there was a decrease after high-fat diet administration for 30 days. The statistic test showed that there were significant differences in HDL levels in normal group and treatment (negative control, simvastatin and Zingiber montanum rhizome extract) where p < 0.05. High-fat diet administration for 30 days could reduce HDL level in rats’ blood. Zingiber montanum rhizome extract was done for another 30 days, and then HDL level in rats’ blood was measured. Increased HDL levels occurred in the treatment group (rats that were given simvastatin, EEZR, MEZR, EAEZR). There was a significant difference between HDL level of rats’ blood in treatment group and negative group.

The measurement results of TC, TG and HDL levels showed that Zingiber montanum rhizome extract could improve lipid profile which can decrease TC and TG levels and could increase HDL level in blood. The difference in rats’ blood lipid levels (TG and HDL) that were given EAEZR showed the highest results. This might be due to the active chemical content that was able to be extracted by the ethyl acetate solvent and made the ability to decrease TG levels and increase HDL levels was highest compared to the ethanol and methanol extract of Zingiber montanum rhizome. The ethanol extract of the Zingiber montanum rhizome is capable of inhibiting pancreatic lipase enzyme so that it can impede lipid absorption in the small intestine. The ability to inhibit the action of pancreatic lipase enzyme will impede the absorption of TG in the gut. Inhibition of pancreatic lipase enzyme is one way to overcome obesity. The tannins content in the Araucaria angustifolia extract is responsible for the ability to inhibit pancreatic lipase enzyme. Some plant extracts were rich in polyphenol, saponin and terpene contents are believed to have a role in the fat digestion inhibition. Gingko biloba extract which contained triterpenoid compound had a hypolipidemic effect by inhibiting pancreatic lipase enzyme. Flavonoid compounds that were contained in Armoracia rusticana root and left extracts were also able to inhibit pancreatic lipase enzymes. The ability of ethanol, methanol and ethyl acetate extract from Zingiber montanum rhizome in lowering total cholesterol, triglycerides and LDL were possibly caused by the terpenoid and flavonoid compounds.

CONFLICT OF INTEREST:
The authors declare no conflict of interest.
REFERENCES: