2018 INTERNATIONAL CONFERENCE ON SMART-GREEN TECHNOLOGY IN ELECTRICAL AND INFORMATION SYSTEM (ICSGTEIS)

CONFERENCE PROCEEDING

Smart Green Technology for Sustainable Living

25 - 27 OCTOBER 2018
BALI - INDONESIA

Organized By:
DEPARTMENT OF ELECTRICAL ENGINEERING
POSTGRADUATE STUDY IN ELECTRICAL ENGINEERING
FACULTY OF ENGINEERING
UDAYANA UNIVERSITY

CORE
CENTER FOR COMMUNITY BASED RENEWABLE ENERGY
UDAYANA UNIVERSITY - BALI

UDAYANA CENTER FOR LEARNING INNOVATION IN ASIA PACIFIC

IEEE
INDONESIA SECTION

55th
DIES NALUSI
UNIVERSITAS UDAYANA

55th
ANNIVERSARY
FACULTY OF ENGINEERING
UDAYANA UNIVERSITY

IEEE
UDAYANA UNIVERSITY STUDENT BRANCH
As the General Chair of the 2018 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS), it is my great pleasure to welcome you to the conference held in Kuta Bali of Indonesia. The ICSGTEIS 2018 conference aims to provide a forum for international researchers, experts, and students to share, exchange ideas, innovation, and experience of the research in the field of Smart-Green Technology. The conference provides an opportunity to strengthen collaboration and networking among participants while enjoying a religious atmosphere and traditional culture of Bali.

The ICSGTEIS covers a number of topics organized into tracks such as Energy and Power Engineering, Electronic Devices and Systems, Multimedia Telecommunications, and Software Engineering and Information Systems. All accepted papers are selected through a peer review process. The committee has received 110 submissions, and 43 papers are selected for presentation. In addition to the technical sessions, the conference program also includes plenary lectures and social event.

I would like to take this opportunity to thank the keynote speakers: Professor Jean-Marie BONNIN from Institut Mines Télécom France, Dr Tania Urmee from School of Engineering and Information Technology Murdoch University, Perth, Australia, and Associate Professor Wei-Chung Teng from Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taiwan for sharing their latest research in their respected fields within electrical and information systems.

I would also like to express my appreciation to Professor AAR Sudewi as Rector Udayana University, Professor NG Antara as Vice Rector Udayana University for Academic Affairs, Professor NPG Suardana as Dean Faculty of Engineering, Dr IBG Manuaba as Head of Department of Electrical Engineering, Dr Linawati as Head of Postgraduate Program in Electrical Engineering, Faculty of Engineering, Udayana University who have supported the ICSGTEIS conference this year. I also would like to thank Professor FY Zulkifli as Chair of IEEE Indonesia Section for their continuous support to the conference. Many thanks also go to the Technical Program Committee and the Organizing Committee, Center for Community Based Renewable Energy (CORE) Udayana University, Udayana Center for Learning Innovation in Asia Pacific (UCLEAP), and IEEE Student Branch Udayana University. Last but not least, thanks to all Presenters and Authors who have chosen ICSGTEIS 2018 to publish their research findings which without their participation this conference would not be possible.

I wish you all to have a great time and a successful conference while sampling the hospitality of Bali.

Dr I Nyoman Satya Kumara, MIEEE
General Chair of ICSGTEIS 2018
INTERNATIONAL ADVISORY BOARD

M. Ashari (Indonesia)
H. Orton (Canada)
Suwarno (Indonesia)
B. T. Phung (Australia)
T. Usagawa (Japan)
F. Y. Zulkifli (Indonesia)
ORGANIZING COMMITTEE

- **General Chair:**
 I N. S. Kumara

- **Co-Chair:**
 W. G. Ariastina
 K. O. Saputra

- **General Secretary:**
 N. M. A. E. D. Wirastuti

- **Co-Secretary:**
 G. Sukadarmika

- **Treasury:**
 I. N. Setiawan
 W. Sukenyasa

- **Program:**
 Y. Divayana
 I. B. G. Manuaba

- **Conference Management System:**
 D. M. Wiharta
 D. C. Khrisne

- **Publications / Proceeding:**
 N. P. Sastra
 I M. A. Suyadnya
TECHNICAL PROGRAM COMMITTEE

- Chair:
 I. A. D. Giriantari
- Co-Chair:
 Linawati
 L. Jasa
- I. P. A. Bayupati (Indonesia)
- T. Basaruddin (Indonesia)
- T. R. Blackburn (Australia)
- D. Churchill (Hongkong)
- A. Dharma (Indonesia)
 - Z. Dewei (USA)
 - M. Esa (Malaysia)
- N. Gunantara (Indonesia)
- D. Gunawan (Indonesia)
- C. Y. Hui (Singapore)
- G. Hendrantoro (Indonesia)
- R. S. Hartati (Indonesia)
- T. Hashimoto (Japan)
- R. M. Ijtihadie (Indonesia)
- Y. S. Iwaran (Indonesia)
- B. Kosasih (Australia)
 - K. Kunio (Japan)
- R. Lumanto (Indonesia)
- I. Liem (Indonesia)
- E. Mutlugun (Turkey)
- I. W. Mustika (Indonesia)
- H. Outhred (Australia)
- A. Priyadi (Indonesia)
- I. K. E. Purnama (Indonesia)
- I. K. G. D. Putra (Indonesia)
- M. H. Purnomo (Indonesia)
- O. Penangsang (Indonesia)
- M. Retnanestri (Australia)
 - Y. Sasaki (Japan)
 - E. Sari (Australia)
- I. N. W. Satiawan (Indonesia)
- M. Sudarma (Indonesia)
- Y. K. Suprapto (Indonesia)
- S. Soegijoko (Indonesia)
- S. Y. Shin (South Korea)
- A. M. Tjoa (Austria)
- M. M. Tentzeris (USA)
- Taufik (USA)
- K. Umeno (Japan)
- I. W. Widhiada (Indonesia)
- I. M. A. S. Wijaya (Indonesia)
- Y. Xuyong (China)
TABLE OF CONTENTS

Copyright Page ... i
Welcome Message... ii
International Advisory Board .. iii
Organizing Committee ... iv
Technical Program Committee ... v
Table of Contents ... vii

ANFIS-based Controller Application to Regulate Firing Angle of Inverter in Average Value Model-High Voltage Direct Current Transmission System ... 1
I. M. Ginarsa, A.B. Muljono, I.M.A. Nrartha, I.P. Ardana

Smart Energy Meter For Electric Vehicle Based On Bluetooth And GSM Technology 7
I.M.A. Nrartha, A. B. Muljono, I M. Ginarsa, S. M. Al Sasongko, I.B.F. Citarsa

Sustainable energy for all: Impacts of Sustainable Development Goals implementation on household sector energy demand in Indonesia ... 13
Wayan G. Santika, Tania Urmee, Md. Anissuzaman, GM Shafiullah, Parisa A. Bahri

Auto-reclose Performance Evaluation on 500kV Transmission Line with Four Circuits on One Tower .. 19
Aristo Adi Kusuma, Putu Agus Aditya Pramana, Kevin Gausultan H. M., Buyung Sofiarto Munir

Monitoring of Frequency Response in Java-Bali System during Loss of Generation Event 24
Hariadi Aji, Adi Purwanto, Eko Yudo Pramono

An Assessment of Incentives Combination for Solar Energy Technologies – A Case Study for Chile .. 29
Yeliz Simsek, Carlos Mata-Torres, Tania Urmee, Parisa Arabzadeh Bahri, Rodrigo Escobar

The Optical Band Gap based on K-M Function on Layer of LiTaO3 with Variation Treatment of Annealing Temperature ... 35
Nani Djohan, Richie Estrada, Nina Sevani, Hendradi Hardhienata, Irzaman

Feature Learning Using Convolutional Neural Network for Cardiac Arrest Detection 39
Minh Tuan Nguyen, Kim Kiseon

Design of Self-Tuning Regulator for Brushless DC Motor Speed Control .. 43
Wahyudi, Mega Rosaliana, Sumardi, Budi Setiyono

Optimization of the Wideband Code Division Multiple Access Network at the BTS of Sempidi Area 48
I Made Indra Wiguna, Gede Sukadarmika, Dewa Made Wiharta

Monitoring Systems for Counting People using Raspberry Pi 3 .. 57

Contact Strategy for VDTN Data Collection in Smart Cities ... 61
Ngurah Indra ER, Kamal Deep SINGH, Jean-Marie BONNIN
Simple carrier-based Space Vector PWM schemes of dual inverter fed three-phase open-end winding motor drives with equal DC-link voltage .. 65
I K. Wirayajati, I. A. D. Giriantari, I N. Satya Kumara, Lie Jasa

A Study of Optimal Power Flow Interconnection Celukan Bawang Power Plant in 150 kV Bali Electricity System .. 71
Nyoman Aldy Munawan, Rukmi Sari Hartati, I Wayan Sukerayasa

The Evaluation of Ceramic Insulator Performance around Thermal Power Plant in Indonesia 77
Brian Bramantyo S.D.A. Harsono, Buyung Sofiarto Munir, Nur Widi Priambodo, Handrea Bernando Tambunan

Investigation of Fault Event that Affected by The Current Transformer Position 82
Putu Agus Aditya Pramana, Aristo Adi Kusuma, Buyung Sofiarto Munir, Arionmaro Asimaremare

A Study Of Corn Cob (Zea Mays) Utilization As Alternative Fuel For Biomass Power Plant In Sumbawa Island .. 86
Ahmad Jaya, Rukmi Sari Hartati, I Nyoman Satya Kumara

Intermittent Renewable Energy Source (IRES) Penetration Level into Bangka Power System 91
Handrea Bernando Tambunan, Kevin Gausultan H. Mangunkusumo, Brian Bramantyo S.D.A. Harsono, Arionmaro Asimaremare, Nur Widi Priambodo, Buyung Sofiarto Munir

Supervised Deep Learning Based for Traffic Flow Prediction .. 95
Hendrik Tampubolon, Pao-Ann Hsiung

Development of SMS Sending Software for Balinese Script Text on Android Platform 101
Ida Bagus Kade Dwi Suta Negara, NMAE Dewi Wirastuti, Nyoman Pramaita

Analysis and Implementation of K-means Clustering Algorithm for Motorized-vehicles Taxation Strategy (Case Study: Bali Regional Revenue Department) .. 104
Novandika Dwipayana, Gede Rasben Dantes, Gede Indrawan

Performance Evaluation of Caching Solution from Three Layers Perspective for Storage Performance in Vmware-based Virtualization Environment .. 108
Marcel

Developing Balinese Culture-Based Serious Game Model: I Rajapala as a Hunter 114
I Nyoman Putu Suwindra, I Ketut Gede Darma Putra, I Made Sudarma, Nyoman Putra Sastra

E-KUBU: Smart Home Automation System for Housing Energy Management .. 120

A Study of Conversion of Sardine Flour Used Cooking Oil into Biodiesel Using Microfiltration and Transesterification Techniques ... 126
Rukmi Sari Hartati, Atmiral Ernes, I Nyoman Supraptin Winaya, Poppy Diana Sari

Robot for Cleaning Solar PV Module to Support Rooftop PV Development .. 132
Comparison of Battery Reliability for Offshore Remote Telemetry Unit .. 138
Bachtiar Rifai, N.M.A.E.D. Wirastuti

Performance Evaluation of 25 KW Community Microhydro in Seloliman Village East Java 144
Haksari Laksmi Bestari, I Nyoman Satya Kumara, Wayan Gede Ariastina

Comparison of PV Rooftop Energy Production at Denpasar City Office Building 150
I Putu Eddy Saskara, I Nyoman Satya Kumara, I Wayan Sukerayasa

Optimal PMU Placement In Bali 150 Kv Network ... 157
I G P Ari Suyasa, Rukmi Sari Hartati, Dewa Made Wiharta

Virtual Backup Server Optimization on Data Centers using Neural Network .. 162
Muhammad Riza Hilmi, Made Sudarma, Linawati

Development of Learning Vector Quantization Neural Network for Forecasting Fluctuations in Commodity Prices .. 168
I Putu Oka Wisnawa, Agus Dharma, Made Sudarma

Prediction of Sales Transaction Using Adaboost, Random Forest and Linear Regression in Retail Company .. 174
Y. I. T. Widyanto, G.R. Dantes, I. N. Sukajaya

Geographic Information System for Balinese Handicraft Export Distribution using K-Medoid and Elbow Method .. 179
DA Indah Cahya Dewi, IA Dwi Giriantari, M Sudarma

Opinion Mining on Twitter Social Media to Classify Racism Using Combination of POS Tagging, Naïve Bayes Classifier, and K-Nearest Neighbor .. 185
M. Azman Maricar, I Nyoman Satya Kumara, Made Sudarma

Instrumentation Checking Information System for Sanglah Geophysical Station 191
Ida Bagus Putu Teguh Brahmantika, I Gusti Komang Diafari Djuni, Duman Care Khrisne

Performance Evaluation of Roof Top Smart Microgrid at Udayana University 196
Ida A.D. Giriantari, Intan A. Medina, I W. Sukerayasa, Rina Irawati

New Turbine Design Model NEST-LIE .. 200
Lie Jasa, I Putu Ardana, Ratna Ika Putri

Implementation of Grid-connected PV Plant in Remote Location in Sumbawa Island of Indonesia: Lesson Learned .. 203
INS Kumara, T Urmee, Y Divayana, IN Setiawan, AAGA Pawitra, A Jaya

Evaluation of Integrated University Management Information System Using COBIT 5 Domain DSS ... 210
Ayu Indah Saridewi, Dewa Made Wiharta, Nyoman Putra Sastra

Nonformal Test-Based Gamification Model to Improve Student Motivation .. 215
Adi Panca Saputra Iskandar, Made Sudarma, Komang Oka Saputra

Indonesian Herbs and Spices Recognition using Smaller VGGNet-like Network 221
D. C. Khrisne, I M. A. Suydanya
Comparison of PV Rooftop Energy Production at Denpasar City Office Building

Abstract—The Indonesian government has made various targets for implementing renewable energy, one of which is the application of PV. PV rooftop in households and offices is one of the applications of PV that can be applied because people can contribute to achieving national energy targets by utilizing empty spaces on the roofs of buildings. Therefore, in this paper we will examine how the rooftop PV system is designed and how energy is produced, as well as the factors that affect energy production. PV rooftop in Denpasar city office building has examined how much energy potential is simulated with the HOMER application. The rooftop PV in the two pilot projects will also determine how the orientation and slope angle of the PV module are optimum. From the simulation results, the energy potential in the two pilot projects is 3% and 39% greater than the actual energy. PV rooftop on both pilot projects has 20° PV slope, while the calculation results show an optimal slope is 15°. The amount of energy produced can be affected by its less than optimal slope angle, the cleanliness of the modules that are not cleaned regularly, and the many weather conditions, rainy days and cloudy days, so that the sun is less than optimal.

Keywords—Renewable Energy, PV, PV Rooftop, Energy Production, Potential of PV Energy

I. INTRODUCTION

The application of Renewable Energy in Indonesia is still very small from the existing potential of 443.2 GW. The potential for renewable energy in Indonesia is only 2% of its potential. Solar energy is a renewable energy that has a huge potential energy of 207.9 GW, but the use of solar energy in Indonesia has only reached 0.04% of its potential. The development of solar power for electricity is projected at 6.5 GW in 2025 and 45 GW in 2050 [1].

PV rooftop can help the government in fulfilling the target of solar power utilization in Indonesia, where solar panels are placed on roofs of houses or offices so that they can utilize the empty spaces on the roof to get solar energy that can be converted into electrical energy. Urban communities in Indonesia also have quite good characteristics in the use of PV such as purchasing power, level of education, and understanding of the environment and its protection. In Indonesia there is also the availability of PV components to support the PV rooftop, the constraints of the slow progress of this development because the main components of PV are solar panels that still get these products from other countries [2]. The government has also made regulations to support the development of PV in Indonesia for the realization of renewable energy targets and attract the public in utilizing rooftop PV. PLN's Directors Regulation No. 0733.K / DIR / 2013 allows people to sell electrical energy produced by rooftop PV to the State Electricity Company (PLN) [3].

PV in Indonesia will be built a lot, especially PV rooftop in achieving the 6.5 GW target in 2025. Therefore, PV rooftop information is needed for people who will install PV rooftop so they can contribute in the development of PV. These information are the technical design of PV, Potential energy production of PV, energy production from installed PV, and factors that affect PV energy production. This information is expected to help people to contribute in building PV at home or in their offices.

PLN Distribusi Bali in the city of Denpasar has installed two PV rooftop that can be used as pilot projects, that is in the PLN Distribusi Bali building (Building #1) and in the PLN Area Bali Selatan building (Building #2). Building #1 is installed with a 30kW rooftop PV with a number of 120 units of modules, each module has an output power of 250W, inverter used is two units with a capacity of each inverter of 20kW. In Building #2 there is a 10kW rooftop PV with a number of 38 unit modules, each module has an output power of 265W, with one inverter unit used with a capacity of 10kW. Both pilot projects do not use battery backup and directly connected to the grid.

This study will examine both the rooftop PV pilot projects in Building #1 and Building #2 by simulating the installed PV to get the energy potential that is simulated with the HOMER software. The study also determines the orientation and slope angle of the PV to be analyzed to find out about the PV rooftop technical design, the PV rooftop potential energy produced, energy production of installed PV rooftop, and factors that affect the PV rooftop energy production. These information about PV rooftop is not available yet in Indonesia even though this information is very important to be known by the Indonesian people. This information is also expected to attract that people to participate in installing rooftop PV for the realization of the national energy that has been targeted.

II. METHODOLOGY

The data used in this study are documentation, environmental conditions, monitoring data recorded on PV installed in Building #1 and Building #2, single line diagrams, location data and weather data from the Climatology and Geophysics Meteorology Agency (BMKG).
The maximum efficiency of the solar panel will increase if the angle of sunlight is always at 90° to the panel surface. But in reality the incident of solar radiation varies based on latitude and declination of the sun for a year. In fact the Earth's rotational axis has a slope of about 23.45° to the plane of the Earth's orbit by the sun, at certain latitudes high from the sun in the sky varies every day. To find out the maximum height of the sun (in degrees) when the sun reaches the sky (α), it is easy to use the following formula [4]:

\[\alpha = 90° - \text{lat} + \delta \ (N \text{ hemisphere}) \]
\[\alpha = 90° + \text{lat} - \delta \ (S \text{ hemisphere}) \]

Where, Lat is the latitude (latitude) of the PV location that is installed (in degrees) and δ is the angle of the sun's declination (23.45°).

If the angular angle of the maximum height of the sun (α) is known, then the slope of the PV module (β) can also be known. But it is not enough to just know α to determine the optimal orientation of the PV module, while the angle that must be formed by the PV module against the earth's surface (β), can be obtained by:

\[\beta = 90° - \alpha \]

To get potential energy production in PV installations can be done with a professional simulation program [5]. HOMER is software that is used to help modeling of an electric power system by using a variety of renewable resources [6].

PV orientation in the case of PV rooftop can be obtained by using the compass application on a smartphone that provides a map from Google so that we can see the image of the upper part of the building from the Google satellite and get the results in which direction the roof of the building is facing [7].

The roof orientation is obtained by entering the address where the building was built on Google Maps, after that there will be a compass image that shows the cardinal direction of Google Maps, and there is an axis in the center of the compass that shows the orientation where the observer / building is facing, after that place the axis on the application to the axis of the building that wants to know its orientation, after that we get in the direction of the orientation of the building.

The slope angle for rooftop PV, especially the pitched roof usually tends to follow the slope of the roof, in this case to find out how the slope of the PV can be measured by using a smartphone application that can do angle measurements equipped with angle measurement features via camera or image such as the Pitch Gauge application, Angle Meter Pro, Smart Protactor [8]. The slope measurement is done by calibrating the smartphone where the 0° angle is parallel to the roof base (Run / Span), then the smartphone is tilted to follow the slope of the roof captured by the camera and the measurement results are displayed on the screen.

Research on the production of PV rooftop energy in Building # 1 and PV rooftop in Building # 2 is carried out with the following steps:

![Figure 1. Research Diagram](image)

III. RESULT AND DISCUSSION

A. Technical Design PV Rooftop Building #1

Building #1 located at Jl. Letda Tantular No.1, Dangin Puri Klod, Denpasar Timur, Kota Denpasar, Bali.

![Figure 2. PV Rooftop at Building #1](image)

Building # 1 installed PV rooftop with a capacity of 30kW, installed since May 2017 and starting operation in June 2017. PV rooftop Building # 1 is an on-grid PV that supplies electrical energy to the office and gets additional electricity supply from the grid if the PV is not enough to fill the load.
PV rooftop in Building #1 is a PV with the system connected to the grid (On-Grid). PV rooftop in Building #1 has a power capacity of 30 kWp, which is produced from 120 Perlight PLM-260p-60 series PV modules with the power of each PV module is 250 Wp. The entire PV module is divided into 2 arrays, each array consisting of 60 modules connected in series and parallel. Electrical energy produced by one group of PV arrays will be distributed first through the combiner panel. After going through the combiner panel, electrical energy in the form of direct current will be converted by the SPI20K-B Series Kehua Tech inverter into alternating current to pass through the AC distribution panel. The AC distribution panel will distribute the PV energy to the office load (690 kVA) which will get a back-up from the grid if the energy produced by PV is not enough to fill the office load.

B. Technical Design PV Rooftop Building #2

Building #2 located at Jl. P.B. Sudirman No.2, Dauh Puri, Denpasar Barat, Kota Denpasar, Bali. Building #2 is installed with PV rooftop with a capacity of 10 kW, installed since the beginning of January 2017 and starts operating in mid-January 2017. PV rooftop Building #2 is an on-grid PV that supplies electrical energy to the office and gets additional electricity supply from the grid if PV is not enough to fill the load.
PV rooftop in Building # 2 is a PV with a grid-connected system (On-Grid). PV rooftop in Building # 2 has a power capacity of 10 kWp, generated from 38 Canadian Solar CS6P-265P-SD PV modules with the power of each PV module is 265 Wp. The entire PV module is divided into 2 arrays, each array consisting of 19 modules connected in series.

The electrical energy produced by a group of PV arrays will be distributed first through to the DC isolator kit. After going through the DC isolator kit, the electrical energy in the form of direct current will be converted by the Growatt 10000UE inverter into an alternating current to the AC isolator kit to pass the AC distribution panel, which will then be distributed to the office load (197 kVA) which will get a back-up from the grid if PV cannot fill the load.

The orientation of PV in both locations is facing north, because both locations are located in the southern latitude. The orientation of the PV module follows the roof orientation obtained with the GPS Compass Navigator application.

The slope of PV module (β) in both locations is the same because the latitude of the two locations tends to be the same, namely 8.66 south latitude and the slope of PV is determined by looking for the maximum sun height in degrees (\(\alpha\)) using:

\[
\alpha = 90^\circ + \text{lat} - \delta \\
= 90^\circ + 8.66^\circ - 23.45^\circ \\
= 75.21^\circ
\]

While the angle that must be formed by the PV module against the earth's surface/the slope of PV (β), can be obtained as follows:

\[
\beta = 90^\circ - \alpha \\
= 90^\circ - 75.21^\circ \\
= 14.79^\circ = 15^\circ
\]

So, the optimal PV module slope is 15°, the slope of PV in both locations is not optimal, which is 20° obtained from the Angle Meter Pro application.

C. Energy Simulation

Potential of PV rooftop energy production in both PLN buildings is simulated using the HOMER application. There are three scenarios in this simulation, the first without using a solar tracker with the slope angle of the PV module according to the installed PV. Second, simulating the installed PV with vertical axis continuous adjustment solar tracker where the axis of PV movement is in the north and south so that PV moves from east to west, selection of this single axis vertical type solar tracker because this type is the most commonly used type and produces more energy from other single axis types [9]. Third, Solar tracker two axis where PV moves freely from east to west and also north to south according to where the sun comes from. So that the rooftop PV simulation results in Building #1 and Building #2 on the HOMER can be seen as follows:

<table>
<thead>
<tr>
<th>Month</th>
<th>No Tracking (kWh)</th>
<th>Single Axis (kWh)</th>
<th>Two Axis (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>1,090</td>
<td>1,436</td>
<td>1,527</td>
</tr>
<tr>
<td>Feb</td>
<td>1,058</td>
<td>1,308</td>
<td>1,363</td>
</tr>
<tr>
<td>Mar</td>
<td>1,328</td>
<td>1,569</td>
<td>1,682</td>
</tr>
<tr>
<td>Apr</td>
<td>1,381</td>
<td>1,534</td>
<td>1,686</td>
</tr>
<tr>
<td>May</td>
<td>1,474</td>
<td>1,577</td>
<td>1,823</td>
</tr>
<tr>
<td>Jun</td>
<td>1,357</td>
<td>1,423</td>
<td>1,670</td>
</tr>
<tr>
<td>Jul</td>
<td>1,367</td>
<td>1,445</td>
<td>1,667</td>
</tr>
<tr>
<td>Aug</td>
<td>1,453</td>
<td>1,589</td>
<td>1,813</td>
</tr>
<tr>
<td>Sep</td>
<td>1,458</td>
<td>1,699</td>
<td>1,894</td>
</tr>
<tr>
<td>Oct</td>
<td>1,461</td>
<td>1,791</td>
<td>1,962</td>
</tr>
<tr>
<td>Nov</td>
<td>1,217</td>
<td>1,589</td>
<td>1,757</td>
</tr>
<tr>
<td>Dec</td>
<td>1,153</td>
<td>1,530</td>
<td>1,652</td>
</tr>
<tr>
<td>Total (kWh)</td>
<td>15,799</td>
<td>18,491</td>
<td>20,497</td>
</tr>
</tbody>
</table>

Potential of PV energy production Building #2 for a year from HOMER simulation results is 15,799 kWh/year. PV energy potential with single axis solar tracking is 18,491 kWh/year which is 17.0% greater than the energy potential without solar tracker. PV energy potential with two axis solar tracking is 20,497 kWh/year which is 29.7% greater than energy potential without solar tracker.
TABLE II. RESULT OF HOMER PV BUILDING #1 SIMULATION

<table>
<thead>
<tr>
<th>Month</th>
<th>No Tracking (kWh)</th>
<th>Single Axis (kWh)</th>
<th>Two Axis (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>3,267</td>
<td>4,303</td>
<td>4,576</td>
</tr>
<tr>
<td>Feb</td>
<td>3,172</td>
<td>3,921</td>
<td>4,083</td>
</tr>
<tr>
<td>Mar</td>
<td>3,981</td>
<td>4,701</td>
<td>5,041</td>
</tr>
<tr>
<td>Apr</td>
<td>4,140</td>
<td>4,598</td>
<td>5,053</td>
</tr>
<tr>
<td>May</td>
<td>4,418</td>
<td>4,726</td>
<td>5,461</td>
</tr>
<tr>
<td>Jun</td>
<td>4,068</td>
<td>4,266</td>
<td>5,003</td>
</tr>
<tr>
<td>Jul</td>
<td>4,096</td>
<td>4,331</td>
<td>4,996</td>
</tr>
<tr>
<td>Aug</td>
<td>4,354</td>
<td>4,760</td>
<td>5,433</td>
</tr>
<tr>
<td>Sep</td>
<td>4,369</td>
<td>5,090</td>
<td>5,675</td>
</tr>
<tr>
<td>Oct</td>
<td>4,379</td>
<td>5,368</td>
<td>5,878</td>
</tr>
<tr>
<td>Nov</td>
<td>3,646</td>
<td>4,761</td>
<td>5,263</td>
</tr>
<tr>
<td>Dec</td>
<td>3,457</td>
<td>4,586</td>
<td>4,950</td>
</tr>
<tr>
<td>Total</td>
<td>47,347</td>
<td>55,413</td>
<td>55,413</td>
</tr>
</tbody>
</table>

Potential of PV energy production Building #1 for a year from HOMER simulation results is 47,347 kWh/year. PV energy potential with single axis solar tracking is 55,413 kWh/year which is 17.0% greater than the energy potential without solar tracker. PV energy potential with two axis solar tracking is 55,413 kWh/year which is 29.7% greater than energy potential without solar tracker.

D. Actual Energy Production

PV rooftop energy production in Building #2 is obtained from May 2017 to April 2018 with actual energy production data as follows:

TABLE III. ACTUAL ENERGY PRODUCTION PV BUILDING #2

<table>
<thead>
<tr>
<th>Year</th>
<th>Energy Production (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>1,519</td>
</tr>
<tr>
<td>Jun</td>
<td>1,275</td>
</tr>
<tr>
<td>Jul</td>
<td>1,297</td>
</tr>
<tr>
<td>Aug</td>
<td>1,359</td>
</tr>
<tr>
<td>Sep</td>
<td>1,458</td>
</tr>
<tr>
<td>Oct</td>
<td>1,342</td>
</tr>
<tr>
<td>Nov</td>
<td>994</td>
</tr>
<tr>
<td>Dec</td>
<td>992</td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>1,002</td>
</tr>
<tr>
<td>Feb</td>
<td>1,196</td>
</tr>
<tr>
<td>Mar</td>
<td>1,353</td>
</tr>
<tr>
<td>Apr</td>
<td>1,589</td>
</tr>
<tr>
<td>Total</td>
<td>15,375</td>
</tr>
</tbody>
</table>

The largest PV energy production is in April 2018 and the smallest PV energy production in June 2017, with an average energy production in one year is 1,281 kWh/month. The energy produced by PV supplies to office loads by 6% where the total building #2 load in one year is 254,177.2 kWh with the energy produced by PV for one year is 15,375.4 kWh, the need for loads not yet supplied by PV will be supplied by the PLN grid.

PV rooftop energy production in Building #1 obtained from June 2017 to May 2018 with actual energy production data as follows:

TABLE IV. ACTUAL ENERGY PRODUCTION PV BUILDING #1

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Energy Production (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Jun</td>
<td>796</td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td>2,438</td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>3,984</td>
</tr>
<tr>
<td></td>
<td>Sep</td>
<td>4,333</td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>2,968</td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>2,009</td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>1,381</td>
</tr>
<tr>
<td>2018</td>
<td>Jan</td>
<td>1,446</td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>1,481</td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>1,661</td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>2,010</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>4,449</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>28,955</td>
</tr>
</tbody>
</table>

The largest PV energy production is in May 2018 and the smallest PV energy production in June 2017, with an average annual energy production of 2,413 kWh / month. Energy produced by PV supplies 3% of office expenses for a year from June 2017 to May 2018 where the total load of Building #1 in that year is 879,095.31 kWh with the energy produced by PV for the year is 28,955.31 kWh, the need for loads not yet supplied by PV will be supplied by the PLN grid.

E. Energy Production Analysis

Comparison of actual energy production with energy production simulation results or potential energy production in Building #2 is indicated by the following diagram:

![Figure 8. Diagram of Actual Energy Production and Potential Energy with HOMER Simulation](image)

Comparison of Building #2 potential energy production / simulation results with Building #2 energy production is 3%. A small difference in potential energy production with actual energy production in Building #2 can occur because PV in Building #2 there is no equipment damage that occurs in the 1 year, except that there is no maintenance and no module cleanliness attention. Energy production in April was greater than its potential because in April 2018 there was only 2 rainy days and no cloudy days so that in April 2018 PV had a long duration of sunlight. Energy production in November and December has a considerable difference from its energy potential, this is because in November and December 2017 there are many rainy days and cloudy days
so that the PV surface gets less sunlight. Below is a table of the number of rainy days and cloudy days below:

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Rainy (days)</th>
<th>Cloudy (days)</th>
<th>Sunshine Duration (Hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>May</td>
<td>9</td>
<td>4</td>
<td>6.84</td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td>11</td>
<td>6</td>
<td>6.48</td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td>10</td>
<td>15</td>
<td>6.24</td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>2</td>
<td>8</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>Sep</td>
<td>4</td>
<td>5</td>
<td>7.68</td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>15</td>
<td>4</td>
<td>7.68</td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>22</td>
<td>2</td>
<td>3.48</td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>22</td>
<td>4</td>
<td>3.96</td>
</tr>
<tr>
<td>2018</td>
<td>Jan</td>
<td>25</td>
<td>3</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>20</td>
<td>2</td>
<td>6.36</td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>13</td>
<td>4</td>
<td>6.48</td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>2</td>
<td>0</td>
<td>8.16</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>3</td>
<td>0</td>
<td>8.04</td>
</tr>
</tbody>
</table>

Energy production PV Building # 1 has a significant difference from its energy production with its energy potential which is 39%, this is because in October 2017 to April 2018 there was damage to one of the inverters that got a breakdown in that inverter’s fuse, which caused a reduction in PV energy production of Building #1 from October 2017. In June and July 2017 the energy production of PV Building # 1 differs greatly from its potential because there are still component adjustments in the synchronization settings on inverters when paralleled, which is PV rooftop in the Office Building # 1 is installed since the end of May 2017. Building # 1 also does not carry out routine cleaning treatments.
From the table above we can see the effect of the slope angle of PV where energy production at the optimal PV slope is greater than the energy production at the installed PV slope angle, which is 175 kWh for Building # 2 and 526 kWh for Building # 1. The PV slope of the module Building # 1 and Building # 2 is not the same as the slope of the calculation because the installed PV slope follows the slope of the building roof which causes no optimal solar irradiation and reduced energy produced by PV. HOMER can simulate the effect of the PV angle that is not optimal for energy production as shown by the table above.

IV. CONCLUSION

The PV rooftop in Building # 1 and Building # 2 has a certified rooftop PV component and an optimal module orientation which is facing north, but the PV module slope that follows the roof slope angle is 20 ° where it is not the same as the optimal PV module slope calculation is 15 °. This not optimal slope of PV causes the PV surface to not get effective sunlight and affects the PV energy production. If the slope angle of PV is smaller or bigger than the optimal slope angle; then smaller energy can produced.

PV energy production in Building # 2 is not much different with its energy potential is 3%. PV energy production in Building # 1 is far different from its energy potential is 39%, this is due to damaged components, not optimal PV slope, module cleanliness and weather.

The factors that affect energy production in Building # 2 are the less optimal module angle so that it does not optimal to get sunlight, module cleanliness can also cause the module not optimal to get sunlight, and weather which are plenty of rainy days and cloudy days so that it does not optimal to get sunlight. The factors that affect energy production in Building # 1 are damage to one of the inverters that got a breakdown in that inverter’s fuse, there are still component adjustments in the synchronization settings on inverters when paralleled, the module's slope angle is less than optimal where the slope angle follows the slope angle the roof is 20 ° while the optimal angle is 15 ° so the module is less optimal in getting sunlight, the cleanliness of the module can cause obstruction of the module to get sunlight, and the weather where there are plenty of rainy days and cloudy days so that it lacks of sunlight.

REFERENCES